EVIM • Completed Paper

Growth-Based AGI Whitepaper

Vortex formation, sparsity resilience, and information density as a measurable path to robust AGI.

Information vortex infographic

Key Measures (from paper)

Formalism

We track information concentration and circulation using entropy, flow fields, and topological summaries.

Local Shannon entropy: $$ H(\mathbf{x}, t) = - \sum_i p_i(\mathbf{x}, t)\, \log p_i(\mathbf{x}, t) $$

Fisher information (parameterized): $$ I(\theta) = \int \left( \partial_{\theta} \log p(\mathbf{x}; \theta) \right)^2 p(\mathbf{x}; \theta)\, d\mathbf{x} $$

Rényi entropy: $$ H_{\alpha} = \frac{1}{1-\alpha} \log \sum_i p_i^{\alpha} $$

Information flow field and vorticity analog: $$ \mathbf{J} = - D\, \nabla \rho + \rho\, \mathbf{v}, \qquad \boldsymbol{\omega} = \nabla \times \mathbf{J} $$

Vortex persistence (thresholded) over horizon T: $$ P_{\text{vtx}} = \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{ \|\boldsymbol{\omega}(t)\| \ge \tau \} $$

Recovery time to 95% information flow: $$ T_{95\%} = \inf\{ t : \Phi(t) \ge 0.95\, \Phi_\text{baseline}\} $$

Method at a Glance

  1. Estimate p(x, t) over space or agent graph; compute local entropy and density ρ.
  2. Derive information flow \(\mathbf{J}\), then vorticity \(\boldsymbol{\omega}\); identify centers and boundaries.
  3. Run sparsity sweeps; compute persistence curve and AUC.
  4. Perturb and measure recovery time \(T_{95\%}\).
  5. Summarize topology via persistence diagrams and Betti curves.

Infographic

Vortex persistence under sparsity
Information vortices persist as sparsity increases; circulation (curl of \(\mathbf{J}\)) highlights robust centers.

Downloads